3.1285 \(\int \frac{\cos ^2(c+d x) \sin ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=235 \[ \frac{\left (-5 a^2 b^2+15 a^4-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{2 a^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^6 d}+\frac{\left (5 a^2-b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{15 b^3 d}-\frac{a \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{8 b^4 d}+\frac{a x \left (-4 a^2 b^2+8 a^4-b^4\right )}{8 b^6}-\frac{a \sin ^3(c+d x) \cos (c+d x)}{4 b^2 d}+\frac{\sin ^4(c+d x) \cos (c+d x)}{5 b d} \]

[Out]

(a*(8*a^4 - 4*a^2*b^2 - b^4)*x)/(8*b^6) - (2*a^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^
2]])/(b^6*d) + ((15*a^4 - 5*a^2*b^2 - 2*b^4)*Cos[c + d*x])/(15*b^5*d) - (a*(4*a^2 - b^2)*Cos[c + d*x]*Sin[c +
d*x])/(8*b^4*d) + ((5*a^2 - b^2)*Cos[c + d*x]*Sin[c + d*x]^2)/(15*b^3*d) - (a*Cos[c + d*x]*Sin[c + d*x]^3)/(4*
b^2*d) + (Cos[c + d*x]*Sin[c + d*x]^4)/(5*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.91264, antiderivative size = 235, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {2889, 3050, 3049, 3023, 2735, 2660, 618, 204} \[ \frac{\left (-5 a^2 b^2+15 a^4-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{2 a^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^6 d}+\frac{\left (5 a^2-b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{15 b^3 d}-\frac{a \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{8 b^4 d}+\frac{a x \left (-4 a^2 b^2+8 a^4-b^4\right )}{8 b^6}-\frac{a \sin ^3(c+d x) \cos (c+d x)}{4 b^2 d}+\frac{\sin ^4(c+d x) \cos (c+d x)}{5 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

(a*(8*a^4 - 4*a^2*b^2 - b^4)*x)/(8*b^6) - (2*a^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^
2]])/(b^6*d) + ((15*a^4 - 5*a^2*b^2 - 2*b^4)*Cos[c + d*x])/(15*b^5*d) - (a*(4*a^2 - b^2)*Cos[c + d*x]*Sin[c +
d*x])/(8*b^4*d) + ((5*a^2 - b^2)*Cos[c + d*x]*Sin[c + d*x]^2)/(15*b^3*d) - (a*Cos[c + d*x]*Sin[c + d*x]^3)/(4*
b^2*d) + (Cos[c + d*x]*Sin[c + d*x]^4)/(5*b*d)

Rule 2889

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3050

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
 + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n
*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*
x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0
] && NeQ[c, 0])))

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \sin ^4(c+d x)}{a+b \sin (c+d x)} \, dx &=\int \frac{\sin ^4(c+d x) \left (1-\sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\int \frac{\sin ^3(c+d x) \left (-4 a+b \sin (c+d x)+5 a \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{5 b}\\ &=-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\int \frac{\sin ^2(c+d x) \left (15 a^2-a b \sin (c+d x)-4 \left (5 a^2-b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{20 b^2}\\ &=\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\int \frac{\sin (c+d x) \left (-8 a \left (5 a^2-b^2\right )+b \left (5 a^2+8 b^2\right ) \sin (c+d x)+15 a \left (4 a^2-b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{60 b^3}\\ &=-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\int \frac{15 a^2 \left (4 a^2-b^2\right )-a b \left (20 a^2-b^2\right ) \sin (c+d x)-8 \left (15 a^4-5 a^2 b^2-2 b^4\right ) \sin ^2(c+d x)}{a+b \sin (c+d x)} \, dx}{120 b^4}\\ &=\frac{\left (15 a^4-5 a^2 b^2-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\int \frac{15 a^2 b \left (4 a^2-b^2\right )+15 a \left (8 a^4-4 a^2 b^2-b^4\right ) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{120 b^5}\\ &=\frac{a \left (8 a^4-4 a^2 b^2-b^4\right ) x}{8 b^6}+\frac{\left (15 a^4-5 a^2 b^2-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}-\frac{\left (a^4 \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{b^6}\\ &=\frac{a \left (8 a^4-4 a^2 b^2-b^4\right ) x}{8 b^6}+\frac{\left (15 a^4-5 a^2 b^2-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}-\frac{\left (2 a^4 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=\frac{a \left (8 a^4-4 a^2 b^2-b^4\right ) x}{8 b^6}+\frac{\left (15 a^4-5 a^2 b^2-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}+\frac{\left (4 a^4 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=\frac{a \left (8 a^4-4 a^2 b^2-b^4\right ) x}{8 b^6}-\frac{2 a^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{b^6 d}+\frac{\left (15 a^4-5 a^2 b^2-2 b^4\right ) \cos (c+d x)}{15 b^5 d}-\frac{a \left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^4 d}+\frac{\left (5 a^2-b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^3 d}-\frac{a \cos (c+d x) \sin ^3(c+d x)}{4 b^2 d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{5 b d}\\ \end{align*}

Mathematica [A]  time = 1.74478, size = 177, normalized size = 0.75 \[ \frac{15 a \left (4 \left (-4 a^2 b^2+8 a^4-b^4\right ) (c+d x)-8 a^2 b^2 \sin (2 (c+d x))+b^4 \sin (4 (c+d x))\right )-60 b \left (2 a^2 b^2-8 a^4+b^4\right ) \cos (c+d x)-10 \left (4 a^2 b^3+b^5\right ) \cos (3 (c+d x))-960 a^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )+6 b^5 \cos (5 (c+d x))}{480 b^6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

(-960*a^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] - 60*b*(-8*a^4 + 2*a^2*b^2 + b^4)*C
os[c + d*x] - 10*(4*a^2*b^3 + b^5)*Cos[3*(c + d*x)] + 6*b^5*Cos[5*(c + d*x)] + 15*a*(4*(8*a^4 - 4*a^2*b^2 - b^
4)*(c + d*x) - 8*a^2*b^2*Sin[2*(c + d*x)] + b^4*Sin[4*(c + d*x)]))/(480*b^6*d)

________________________________________________________________________________________

Maple [B]  time = 0.092, size = 871, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*sin(d*x+c)^4/(a+b*sin(d*x+c)),x)

[Out]

-8/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^4*a^2+2/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+
1/2*c)^7*a^3+3/2/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^7*a-1/4/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^5*
tan(1/2*d*x+1/2*c)^9*a-1/4/d/b^2*a*arctan(tan(1/2*d*x+1/2*c))-1/d/b^4*arctan(tan(1/2*d*x+1/2*c))*a^3+2/d/b^6*a
rctan(tan(1/2*d*x+1/2*c))*a^5-4/d/b/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^6+4/3/d/b/(1+tan(1/2*d*x+1/2
*c)^2)^5*tan(1/2*d*x+1/2*c)^4-4/3/d/b/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^2+2/d/b^5/(1+tan(1/2*d*x+1
/2*c)^2)^5*a^4-2/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^5*a^2+2/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^
8*a^4-2/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^8*a^2+8/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d
*x+1/2*c)^2*a^4-4/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^2*a^2+8/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)
^5*tan(1/2*d*x+1/2*c)^6*a^4-4/15/d/b/(1+tan(1/2*d*x+1/2*c)^2)^5-4/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x
+1/2*c)^6*a^2+1/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^9*a^3+12/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^5*
tan(1/2*d*x+1/2*c)^4*a^4-2/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^3*a^3-3/2/d/b^2/(1+tan(1/2*d*x+
1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^3*a+1/4/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)*a-2/d*a^4*(a^2-b^2)
^(1/2)/b^6*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))-1/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2
*d*x+1/2*c)*a^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.79199, size = 996, normalized size = 4.24 \begin{align*} \left [\frac{24 \, b^{5} \cos \left (d x + c\right )^{5} + 120 \, a^{4} b \cos \left (d x + c\right ) + 60 \, \sqrt{-a^{2} + b^{2}} a^{4} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 40 \,{\left (a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )^{3} + 15 \,{\left (8 \, a^{5} - 4 \, a^{3} b^{2} - a b^{4}\right )} d x + 15 \,{\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} -{\left (4 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{120 \, b^{6} d}, \frac{24 \, b^{5} \cos \left (d x + c\right )^{5} + 120 \, a^{4} b \cos \left (d x + c\right ) + 120 \, \sqrt{a^{2} - b^{2}} a^{4} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - 40 \,{\left (a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )^{3} + 15 \,{\left (8 \, a^{5} - 4 \, a^{3} b^{2} - a b^{4}\right )} d x + 15 \,{\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} -{\left (4 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{120 \, b^{6} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[1/120*(24*b^5*cos(d*x + c)^5 + 120*a^4*b*cos(d*x + c) + 60*sqrt(-a^2 + b^2)*a^4*log(((2*a^2 - b^2)*cos(d*x +
c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^
2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 40*(a^2*b^3 + b^5)*cos(d*x + c)^3 + 15*(8*a^5 - 4*a^3*b^
2 - a*b^4)*d*x + 15*(2*a*b^4*cos(d*x + c)^3 - (4*a^3*b^2 + a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^6*d), 1/120*(
24*b^5*cos(d*x + c)^5 + 120*a^4*b*cos(d*x + c) + 120*sqrt(a^2 - b^2)*a^4*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^
2 - b^2)*cos(d*x + c))) - 40*(a^2*b^3 + b^5)*cos(d*x + c)^3 + 15*(8*a^5 - 4*a^3*b^2 - a*b^4)*d*x + 15*(2*a*b^4
*cos(d*x + c)^3 - (4*a^3*b^2 + a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^6*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.24936, size = 630, normalized size = 2.68 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/120*(15*(8*a^5 - 4*a^3*b^2 - a*b^4)*(d*x + c)/b^6 - 240*(a^6 - a^4*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sg
n(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^6) + 2*(60*a^3*b*tan(1/2*d*x +
 1/2*c)^9 - 15*a*b^3*tan(1/2*d*x + 1/2*c)^9 + 120*a^4*tan(1/2*d*x + 1/2*c)^8 - 120*a^2*b^2*tan(1/2*d*x + 1/2*c
)^8 + 120*a^3*b*tan(1/2*d*x + 1/2*c)^7 + 90*a*b^3*tan(1/2*d*x + 1/2*c)^7 + 480*a^4*tan(1/2*d*x + 1/2*c)^6 - 24
0*a^2*b^2*tan(1/2*d*x + 1/2*c)^6 - 240*b^4*tan(1/2*d*x + 1/2*c)^6 + 720*a^4*tan(1/2*d*x + 1/2*c)^4 - 160*a^2*b
^2*tan(1/2*d*x + 1/2*c)^4 + 80*b^4*tan(1/2*d*x + 1/2*c)^4 - 120*a^3*b*tan(1/2*d*x + 1/2*c)^3 - 90*a*b^3*tan(1/
2*d*x + 1/2*c)^3 + 480*a^4*tan(1/2*d*x + 1/2*c)^2 - 80*a^2*b^2*tan(1/2*d*x + 1/2*c)^2 - 80*b^4*tan(1/2*d*x + 1
/2*c)^2 - 60*a^3*b*tan(1/2*d*x + 1/2*c) + 15*a*b^3*tan(1/2*d*x + 1/2*c) + 120*a^4 - 40*a^2*b^2 - 16*b^4)/((tan
(1/2*d*x + 1/2*c)^2 + 1)^5*b^5))/d